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ABSTRACT 
This study presents different analytical and finite element models for sandwich structures with functionally 

graded core. The trade-off between weight and stiffness as well as a comparison between these structures and 

sandwich structures with homogenous core is also presented. The problem of low-velocity impact between a 

sandwich structure with functionally graded core and a rigid spherical indentor is solved. A few advantages and 

disadvantages of these types of structure are presented. Although sandwich structure offer advantages over other 

types of structures, it is important to develop new types of materials in order to obtain the absolute minimum 

weight for given conditions (e.g., structural geometry and loadings). One alternative is represented by 

functionally graded materials (defined as materials with properties that vary with location within the material in 

order to optimize a prescribed function). With the new developments in manufacturing methods these materials 

can be used for a large number of applications ranging from implant teeth to rocket frames 

 

KEYWORDS: Sandwich panels, Functionally graded materials, FG soft-core, Sandwich plate, FGM. 

 

I. INTRODUCTION 
A sandwich structure consists of two thin, stiff, and strong face sheets connected by a thick, light and low-

modulus core using adhesive joints in order to obtain very efficient lightweight structure. In most of the cases 

the faces carry the loading, both in-plane and bending, while the core resists transverse shear loads. A sandwich 

operates in the same way as an I-beam with the difference that the core of a sandwich is of a different material 

and is stretched out as a continuous support for the face sheets. The main advantage of a sandwich structure is 

its exceptionally high flexural stiffness-to-weight ratio compared to other architectures. As a consequence, 

sandwich construction results in lower lateral deformations, higher buckling resistance, and higher natural 

frequencies than do other structures. Thus, for a given set of mechanical and environmental loads, sandwich 

construction often results in a lower structural weight than do other configurations. Few of the drawbacks of 

sandwich structures are: manufacturing methods, quality control and joining difficulties. Laminated composite 

plate with reinforced fibre has lighter weight and higher ratios of strength and stiffness to weight, therefore it 

has been widely applied to many aeronautical and astronautical structures as well as architecture and light 

industry products. With the quality improvement and occurrence of many new kinds of composite materials, 

their applications have become more and more extensive. However, laminated composite structures are weak in 

withstanding shock and likely to be aging, and some damage, such as delamination and crack, may often occur 

during their usage. These disadvantages will lead to a deterioration of the performance and even failure of the 

composite materials. Any damage in a composite structure always starts from a very tiny extent and gradually 

cumulates to some degree that can arouse people’s attention. However, when such damage in a structure reaches 

a notable level, a serious accident will be induced. Obviously, the early discovery of incipient damage and the 

continuously monitoring for the growth and location of damage are the most essential issues in automatic 

damage inspection of in-service composite structures. Recently, great attention has been paid to the concept of 

smart material structures. A smart structure is the one that can sense its internal state and the external 

environment, and based on the information gained responds in a manner that can fulfill its functional  

requirements. The primary advantage of smart structure technology is the potential cost saving due to adopting 

condition-based maintenance strategies and the prospective structural life extension that may be achieved 

through damage repairing. The online detection of incipient damage for composite structures is relatively new 

concepts that are being developed globally to provide more safe, reliable and affordable composite structures. 
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How to identify damage using the information obtained from a damaged composite structure is one of the most 

pivotal research objectives. Various structural damage causes the variation of structural mechanical 

characteristics, and this property has been extensively used for structural damage detection  some 

comprehensive literature reviews about vibration-based structural damage identification. Many strategies, such 

as modal frequency approach , transmittance functions approach, resonance approach , mechanical impedance 

approach , comparing the piezoelectric conductance signature with the baseline signature of the healthy state , 

and wavelet-based approach , have been used to detect structural damage. However, in most of these approaches 

attention is mainly concentrated on whether damage has occurred in the structures. Only a little attention has 

been paid to the lowest extent of structural damage that can be detected. The satisfactory solution of the posed 

issue depends on whether the tiny delamination damage can be expressed in the dynamic model of a composite 

structure. Nowadays, the development of advanced micro-mechanics of composite damage has provided the 

feasibility to express tiny damage in the dynamic model of various composite structures , and many micro-

mechanics models of composite damage have been developed, such as damage model of tensor inner variables, 

damage model of generalized elasticity, meso-scale damage model, and models of micro-crack damage and 

crack extension . Therefore, based on the dynamic model that can indicate tiny damage in any position of a 

composite structure, structural dynamic responses due to various possible tiny damage can be numerically 

simulated. However, literature on this topic has not been found so far. In this study, five piezoelectric patches, 

one acts as the actuator and the other four as the sensors, are embedded in a laminated composite plate for 

obtaining the dynamic responses of the plate, and the dynamic model of the plate is established using FEM and 

micromechanics theory of composite damage. The reliability of this model is verified using experiments. 

According to the energy distribution of the decomposed structural dynamic responses using wavelet packet 

analysis in various frequency bands, the index vector for structural damage detection is extracted. It is shown 

that a very tiny delamination damage area in a laminated composite plate can be well identified when the 

structure is actuated using the excitation signal with ample frequency composition. The numerical results show 

that it is possible to detect the damage of a delamination area less than 0.13% of the total area of the composite 

plate through a comparison of energy spectra of the multiorder wavelet decomposition signals of structural 

dynamic responses. While using comparison of the vibration modal parameters (natural frequency, modal 

damping and mode shape, etc.) with the baseline data of an intact structure, it can only detect delamination 

damage of more than 5–10% of the length of a composite beam . This shows that the method developed in this 

study is much more sensitive than the existing ones. the feature proxy for structural delamination damage is 

extracted from vibration response data of a structure with the known delamination damage including its location 

and size, so the corresponding relationships between the feature proxy and the real delamination damage 

parameters can be established by  using the data obtained according to the corresponding relationships as 

database or the train samples of neural network, to detect the location and size of the unknown delamination 

damage based on the vibration response data of a structure with such unknown delamination damage. This is 

because the on-line vibration response data can be easily measured. the first step study for delamination 

detection. The main contents include data acquisition of vibration response using the established structural 

dynamics model, and the extraction of the feature proxy for different locations and sizes of delamination 

damage using wavelet transform of structural vibration responses. 

 

II. RESEARCH OBJECTIVES 
1. Develop analytical models for sandwich structures with functionally graded core.  

2. Solve contact and impact problems involving sandwich structures with FG core and compare the trade-off 

between using a functionally graded core as opposed to the conventional sandwich design.  

3. Compare the trade-off between the total mass and stiffness in functionally graded materials and 

homogenous materials by solving optimizations problems.  

 

BuketOkutan Baba (2016), Analyzed the perforation energy and failure modes of curved sandwich composites 

with layer wise graded cores were experimentally. Three types of foam were used for flat and curved sandwich 

composites with layered cores. A series of six different core layer arrangements. They observed the contact 

forces, displacements and corresponding perforation energies of square panels were measured and failure modes 

after perforation. They obtained the results that the perforation energies of the sandwich panels were dependent 

on various geometrical and material parameters. The perforation energies of the curved panels with single type 

foam were increased compared to similar flat panels, whereas panels with graded foam behaved differently due 

to the foam layer arrangements.Xinwei Wang ZhangxianYuan.(2016), proposed to accurately analyze the 

static behavior of sandwich panels with FG soft-cores. Two combinations of boundary conditions and three 

types of loading were considered. Due to the severe transverse variations in the material properties and the 
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discontinuity of the first order derivative of material parameters at the middle plane for point discrete methods 

and was solved by the weak form quadrature element method (QEM). They obtained the results which were 

verified with ABAQUS data by using very fine meshes &numerical results were presented to investigate effects 

of the power-law exponent of the material prosperities with variation, boundary conditions Shiqiangli,xinli,et.ol 

(2017) Analyzed the Sandwich panels with triple layered graded honeycomb cores were tested under blast 

loading, The structural deformation modes were classified into three types and the core layer deformation was 

divided into three regions. For the same value of impulse, a localized impulse led to severely localized 

deformation mode A relatively evenly distributed impulse resulted in largely global bending deformation. They 

concluded that under the same loading, graded panels with the core of the largest relative density placed near the 

impact face suffered a smaller deflection than the panels with uniform core. Jacob M.Quintana Todd 

M.Mower (2017), Analyzed Sandwich panels constructed with carbon-fiber facesheets and graphitic-foam 

cores could provide a viable solution for optical benches which required high stiffness and thermal stability. 

They presented that the panels exhibit lower susceptibility to thermal distortion than sandwich panels 

constructed with traditional honeycomb cores or monolithic plates of materials having low thermal Investigated 

the, thermomechanical bending analysis of functionally graded material (FGM) sandwich plates was performed 

by using a four-variable refined plate theory. A new type of FGM sandwich plates, namely, both FGM face 

sheets and FGM hard core were considered. Containing only four unknown functions, the governing equations 

were deduced based on the principle of virtual work and then these equations were solved via Navier approach. 

They  obtained  the analytical solutions to predict the deflections and stresses of simply supported FGM 

sandwich plates. 

 

LinJing FeiYang LongmaoZhao(2017), Presented that the perforation resistance capability of clamped square 

sandwich panels with layered gradient metallic foam cores subjected to the hemispherical-nosed projectile 

impact was investigated numerically. They presented the simulation results  which indicate the layered-gradient 

sandwich had the worst perforation resistance and energy absorption capability. They found that the ungraded 

sandwich panel and the monolithic plate was the best.A.Aliyari ParandA.Alibeigloo (2017), Presented that the 

elasticity solution for static and free vibration analysis of sandwich cylindrical shell with functionally graded 

(FG) core and viscoelastic interface. Variation of Young's Module and material density of FGM core layer were 

obey  the power-law of radial coordinate with the Poisson's ratio which  holds to constant. Time-dependent 

behavior was determined by solving first-order differential equation of sliding displacement at the viscoelastic 

interfaces. They  presented the numerical results were computed and compared with the reported results to 

validate the present approach.  They  found  effects of solid, elastic interfaces, different boundary conditions, 

time and mid radius to thickness ratio on the bending and vibration behaviour of the sandwich shell.S.Jedari 

Salami (2017), Analyzed the response of sandwich beam with carbon nanotube reinforced composite (CNTRC) 

face sheets and soft core subjected to the action of an impacting mass based on the Extended High Order 

Sandwich Panel Theory (EHSAPT). Distribution of fibers through the thickness of the face sheets could be 

uniform or functionally graded (FG). Contact force between the impactor and the beam was obtained using the 

conventional Hertz law. The field equations were derived via the Ritz based applied to the total energy of the 

system. They obtained the solution  in the time domain by implementing the well-known Runge–Kutta method. 

After examining the validity of the present solution, the effects of distribution of Carbon Nanotubes (CNTs), 

nanotube volume fraction, core-to-face sheet thickness ratio, initial velocity of the impactor and the impactor 

mass. They concluded that the highest peak contact force and the lowest indentation of the top face sheet belong 

to the sandwich beam with  distribution of face sheet.José S.MoitaAurélio L.AraújoCristóvão M.Mota 

SoaresCarlos A.Mota Soares (2017), Presented a finite element model which was developed for vibration 

analysis of pure functionally graded material (FGM) structures  and for passive damped sandwich structures 

with a soft viscoelastic core between the FGM layers  were modeled  by using the classical plate theory and the 

core was modeled  by using Reddy’s third-order shear deformation theory. The finite element was obtained by 

using specific assumptions on the displacement continuity at the interfaces between layers. They conducted the 

study to  the time domain  steady state harmonic motion for both analyses the finite element code. Although 

FGMs are highly heterogeneous, it will be useful to idealize them as continua with properties that change 

smoothly with respect to spatial coordinates. This will enable closed-form solutions for some fundamental solid 

mechanics problems, and will aid the development of finite element models for structures made of FGMs. This 

chapter investigates different analytical models available in literature for a sandwich beam and applies them to a 

sandwich beam with functionally graded core. In the first two sections, the governing equations for sandwich 

structures with FG cores are solved for two types of core Young Modulus by two different methods: exact 

solutions are presented for the exponential variation of core Young Modulus and a combination of Fourier series 

and Galerkin method for a polynomial variation of core Young Modulus. Those methods are compared with two 
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equivalent single-layer theories based on assumed displacements, a higher-order theory and a finite-element 

analysis. A very good agreement among the Fourier series-Galerkin method, the higher-order theory and the 

finite-element analysis is found.  

 

Exact Method for Sandwich Structures with Functionally Graded Core  
Venkataraman and Sankar (2001) derived an elasticity solution for stresses in a sandwich beam with a 

functionally graded core. They used Euler-Bernoulli beam theory for analysis of face sheets and plane elasticity 

equations for the core. In the present work, the solution of the sandwich problem was improved by using 

elasticity equation for face sheets also.  

 

The dimensions of the sandwich beam are shown in Figure 2.1.The length of the beam is L, the core thickness is 

h and the face sheet thicknesses are h
f
. The beam is divided into 4 parts or elements: the top face sheet, top half 

of the core, bottom half of the core and the bottom face sheet.  

 

 
Figure 2.1: Sandwich beam with functionally graded core with schematic of the analysis elements. 

 

In general, this model can be applied for sandwich structures with core and face sheets orthotropic materials at 

every point and the principal material directions coincide with the x and z-axes.Consequently, the constitutive 

relations for each layer are: 

{

𝜎𝑥𝑥

𝜎𝑥𝑥

𝜏𝑥𝑧

}

𝑖

=  [
𝐶11 𝐶13 0
𝐶13 𝐶33 0
0 0 𝐶55

]

𝑖

 {

𝜀𝑥𝑥

𝜀𝑥𝑥

𝛾𝑥𝑧

}

𝑖

, for  𝑖𝑡ℎ  element i  = 1,2,3,4 

 

Or 

 

{𝜎} =  [𝐶(𝑧)]{𝜀}  
 

The face sheets are assumed to be homogeneous and isotropic. The core is functionally graded but symmetric 

about the mid-plane given by z=0. The elastic coefficients (c
ij
) of the core are assumed to vary according to: 

𝐶𝑖𝑗 = 𝐶
𝑖𝑗𝑒
𝑜  

 

 

This exponential variation of elastic stiffness coefficients allows exact elasticity solution.  

 

The tractions and displacements at the interface between each element are shown in Figure 2.2. Each element 

has its own coordinate systems. The coordinate systems of each element are chosen at the interface because 

displacements and traction compatibility between elements will have to be enforced at these nodes. 
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Figure 2.2: Traction forces and displacements at the interfaces of each element in the FGM sandwich beam 

 

The governing equations are formulated separately for each element, and compatibility of displacements and 

continuity of tractions are enforced at each interface (node) to obtain the displacement and stress field in the 

sandwich beam. This procedure is analogous to assembling element stiffness matrices to obtain global stiffness 

matrix in finite element analysis.  

 

The top face sheet is subjected to normal tractions such that: 

 

 

𝜎𝑥𝑥(𝑥, 0) = 𝑝𝑎 sin(𝜉𝑥) 

Where 

                                                      ξ = 
𝑛𝜋

𝐿
 , n = 1,3,5,…. 

and 𝑝𝑎
 
is known. Since n is assumed to be odd, the loading is symmetric about the center of the beam. The 

loading given by equation (1.20) is of practical significance because any arbitrary loading can be expressed as a 

Fourier series involving terms of the same type.  

 

The displacement field for each layer is assumed of the form:   

𝑢𝑖(𝑥, 𝑧) = 𝑈𝑖(𝑧) cos( 𝜉𝑥) 

 i = 1,2,3,4 

 

𝑤𝑖(𝑥, 𝑧) = 𝑊𝑖(𝑧) sin( 𝜉𝑥) 

 

 

where u is horizontal displacement and w is vertical displacement and where it is assumed that: 

 

(𝑈𝑖,𝑊𝑖 ) = (𝑎𝑖 , 𝑏𝑖) exp(𝛼𝑖z) 

 

where 𝑎𝑖,𝑏𝑖, 𝛼𝑖 are constants to be determined. 

 

In order to satisfy equilibrium the contributions of the different tractions at each interface should sum to zero. 

Enforcing the force balance and the compatibility of force and displacements at the interfaces enables us to 

assemble the stiffness matrices of the four elements to obtain a global stiffness matrix K:  
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[ 𝑲 ] {𝑈1 𝑊1  𝑈2  𝑊2  𝑈3  𝑊3  𝑈4  𝑊4  𝑈5  𝑊5
   }  

 

 =  {0  𝑝𝑎    0  0  0  0  0  0  0  0}   
 

where K is the global stiffness matrix, a summation of the stiffness matrices for each element. The 

displacements 𝑈1, 𝑊1 … 𝑊5, are obtained by solving (1.24). The obtained displacement field along with the 

constitutive relations is used to obtain the stress field in each element.  

 

Fourier – Galerkin Method for Sandwich Structures with Functionally Graded Core  

Zhu and Sankar (2004) derived an analytical model for a FG beam with Young’s modulus expressed as a 

polynomial in thickness coordinate using a combined Fourier SeriesGalerkin method. In the present work, the 

model is applied to a sandwich beam with FG core. The geometry (Figure 2.1), the load (1.20), and the 

constitutive relations (1.17) are the same as in previous model.  

 

In this section, a brief description of the procedures to obtain the stiffness matrix of top half of the core is 

provided. The derivation of stiffness matrices of other elements follows the same procedures.  

 

The differential equations of equilibrium for the top half of the core are: 
𝜕𝜎𝑥𝑥

𝜕𝑥
+

𝜕𝜏𝑥𝑧

𝜕𝑧
= 0  

 
𝜕𝜏𝑥𝑧

𝜕𝑥
+

𝜕𝜎𝑧𝑧

𝜕𝑧
 = 0 

The variation of Young’s modulus, E in the thickness direction is given by a polynomial in z. e.g.,  

 
  

where E
0 

is the Young’s modulus at z=0 and𝑎1, 𝑎2 , 𝑎3 
 
and 𝑎4

 
are material constants. The thickness in y 

direction is large and plain strain assumption can be used. The elasticity matrix [C] is related to the material 

constants by: 

 

[𝐶] =
𝐸(𝑧)

(1 + 𝑣)(1 − 2𝑣)
(

1 − 𝑣 𝑣 0
𝑣 1 − 𝑣 0

0 0
1 − 2𝑣

2

) 

 

The following assumptions are made for displacements: 

u (𝑥, 𝑧) = 𝑈(𝑧) cos 𝜉𝑥 

w(𝑥, 𝑧) = 𝑊(𝑧) sin 𝜉𝑥 

 

Substituting equation (1.28) into (1.27), the following constitutive relation is obtained:  

 

(

𝜎𝑥𝑥

𝜎𝑧𝑧

𝜏𝑥𝑧

) = (
𝑐11 𝑐13 0
𝑐13 𝑐33 0
0 0 𝐺

) (
−𝜉𝑈 sin 𝜉𝑥
𝑊′ sin 𝜉𝑥

𝑈′ + 𝜉𝑊 cos 𝜉𝑥
) 

 

 

A prime (′) after a variable denotes differentiation with respect to z. Boundary conditions of the beam at x=0 and 

x=L are w(0,z)=w(L,z)=0, and 𝜎𝑥𝑥(0, 𝑧) = 𝜎𝑥𝑥(𝐿, 𝑧) = 0, which corresponds to simple support conditions in the 

context of beam theory. Equations (1.29) can be written as:  

(
𝜎𝑥𝑥

𝜎𝑧𝑧
) = (

𝑆𝑥

𝑆𝑧
) sin 𝜉𝑥 

 

 𝜏𝑥𝑧 = 𝑇𝑍 cos 𝜉𝑥 
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Where 

                                   (
𝑆𝑥

𝑆𝑧
) = (

𝑐11 𝑐13

𝑐13 𝑐33
) (

−𝜉𝑈
𝑊′

) 

 

 

 𝑇𝑧 = 𝐺(𝑈′+ 𝜉𝑊) 
 

Substituting for𝜎𝑥𝑥 , 𝜎𝑧𝑧 , 𝜏𝑥𝑧  from equations (1.31) into equilibrium equations (1.25), a set of ordinary 

differential equations in U(𝑧) and W(z) are obtained: 

 

 𝜉𝑆𝑥+𝑇𝑍'= 0 

 𝑆𝑍 ′− 𝑇𝑍𝜉 = 0 

 

In order to solve equations (1.32) the Galerkin Method is employed: solutions in the form of polynomials in z 

are assumed: 

  U(𝑧)𝑐1∅1(𝑧) + 𝑐2∅2(𝑧) + 𝑐3∅3(𝑧) + 𝑐4∅4(𝑧) + 𝑐5∅5(𝑧) 

 W(𝑧)𝑏1∅1(𝑧) + 𝑏2∅2(𝑧) + 𝑏3∅3(𝑧) +  𝑏4∅4(𝑧) + 𝑏5∅5(𝑧)      

 

where φs are basis functions, and b’s and c’s are coefficients to be determined. For simplicity 1, z, 𝑧2 , 𝑧3 , 𝑧4 are 

chosen as basis functions: 

                                                ∅1(𝑧) = 1;           ∅2(𝑧) = z;     ∅3(𝑧) =  𝑧2; 

 ∅4(𝑧) = 𝑧3;             ∅5(𝑧) = 𝑧4 

 

Substituting the approximate solution in the governing differential equations, the residuals are obtained. The 

residuals are minimized by equating their weighted averages to zero: 

 

 ∫ (𝜉𝑆𝑥 + 𝑇𝑧 ′)
ℎ

0
∅𝑖(𝑧) 𝑑𝑧 = 0,                    i = 1,5 

 

 ∫ (𝑆𝑧 ′− 𝑇𝑍𝜉)
ℎ

0
∅𝐼(𝑧) 𝑑𝑧 = 0                    i = 1,5 

 

Using integration by parts (1.35) can be rewritten as:   

 

 ∫ ∅1𝜉𝑆𝑋 𝑑𝑧 + 𝑇𝑧(ℎ)∅𝑖(ℎ) − 𝑇𝑧(0)∅𝑖(0) − ∫ 𝑇𝑧∅𝑖′
ℎ

0

ℎ

0
𝑑𝑧 = 0 

 ∫ 𝑆𝑧∅𝑖 ′𝑑𝑧
ℎ

0
+∫ 𝑇𝑧𝜉∅𝑖 𝑑𝑧 − (𝑆𝑧(ℎ)∅𝑖(ℎ) − 𝑆𝑧(0)∅𝑖(0))

ℎ

0
= 0,          i =1,5 

 

Substituting for 𝑆𝑋(𝑧), 𝑆𝑧(𝑧)and 𝑇𝑧(𝑧) from equations (1.31) into (1.36) and using the approximate solution for 

U(z) and W(z) in (1.33) it is obtained: 

 

 (
𝐾𝑖𝑗

(1) 𝐾𝑖𝑗
(2)

𝐾𝑖𝑗
(3) 𝐾𝑖𝑗

(4)
) (

𝑏
𝑐

) = (
𝑓𝑖

(1)

𝑓𝑖
(2)

) 

Or 

 

                         [𝑲] (𝒃
𝒄

= (
𝒇𝒊

(𝟏)

𝒇𝒊
(𝟐)

)) 

 

where: 

 

 𝐾𝑖𝑗
(1)

= ξ∫ 𝑐13∅𝑖∅𝑗 ′𝑑𝑧 − 𝜉 ∫ 𝐺∅𝑖 ′∅𝑗 𝑑𝑧
ℎ

0

ℎ

0
 

 

 𝑘𝑖𝑗
(2)

= -∫ 𝐺∅𝑖 ′∅𝑗 ′ 𝑑𝑧 −
ℎ

0
𝜉2 ∫ 𝑐11∅𝑖∅𝑗 𝑑𝑧

ℎ

0
 

 𝐾𝑖𝑗
(3)

= -𝜉2 ∫ 𝐺∅𝑖∅𝑗 𝑑𝑧 − ∫ 𝑐33∅𝑖 ′∅𝑗 ′ 𝑑𝑧
ℎ

0

ℎ

0
            i = 1,5 

http://www.ijesrt.com/


  ISSN: 2277-9655 

[Shaif* et al., 6(10): October, 2017]  Impact Factor: 4.116 

IC™ Value: 3.00  CODEN: IJESS7 

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology 

 [541] 

 𝐾𝑖𝑗
(4) = 𝜉 ∫ 𝑐13∅𝑖 ′∅𝑗 𝑑𝑧

ℎ

0
-ξ∫ 𝐺∅𝑖∅𝑗 ′𝑑𝑧

ℎ

0
 

 

 𝑓𝑖
(1)

= ∅𝑖(0)𝑇𝑧(0) − ∅𝑖(ℎ)𝑇𝑍(ℎ) 

 𝑓𝑖
(2)

= ∅𝑖(0)𝑆𝑧(0) − ∅𝑖(ℎ)𝑆𝑧(ℎ) 

 

 (
𝑏
𝑐

) = (𝑏1  𝑏2  𝑏3  𝑏4  𝑏5  𝑐1  𝑐2  𝑐3  𝑐4  𝑐5) 

 

Let 𝑈2, 𝑊2 , 𝑈3
 
and 𝑊3

 
be the displacements at top and bottom surface of top half of the element (top half of the 

core). Evaluating the expressions for U(z) and W(z) at the top and bottom surfaces and equating them to the 

surface displacements results in the expression: 

 
 

This can be compactly expressed as: 

 

 (

𝑈2

𝑊2

𝑈3

𝑊3

) = [𝑨] (
𝑏1……
𝑐5

) 

 

The tractions 𝑇2, 𝑃2, 𝑇3and 𝑃3acting on the surface can be related to the functions 𝑓𝑖as follows:  

 

  
or 

 

 (
𝑓1

(1)

……

𝑓5
(2)

) =[𝑩] (

𝑻𝟐

𝑺𝟐

𝑻𝟑

𝑺𝟑

) 

 

From (1.37), (1.42) and (1.44) follows: 
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Finally, the stiffness matrix of the top half of the FGM core [𝑆(2)] that relates the surface tractions to the surface 

displacements is obtained as:  

 

  
 

In order to satisfy equilibrium, the contributions of the different tractions at each interface should sum to zero. 

Enforcing the balance and the compatibility of force and displacements at the interfaces enables us to assemble 

the stiffness matrices of the four elements to obtain a global stiffness matrix [S]:  

 

                                                  [𝑺]⌊𝑈1  𝑊1  𝑈2  𝑊2   𝑈3  𝑊3  𝑈4  𝑊4  𝑈5  𝑊5⌋ = 

 

 ⌊0  𝑝𝑎  0  0  0  0  0  0  0  0⌋ 
 

The displacements 𝑈1, 𝑊1 … 𝑊5, are obtained by solving equation (1.47). The displacement field along with the 

constitutive relations is used to obtain the stress field in each element.  

 

III. RESULTS 
1. Maximum normal and shear strains for a given impact energy of 282 J. FG denotes functionally graded 

core. The % reduction in strain in FG cores is with respect to the maximum strain in uniform core. 

 
Core type  

 
𝐸ℎ 𝐸⁄

0
 𝐹𝑚𝑎𝑥(𝑁) 𝜀𝑥 𝛾𝑥𝑧 

   Maximum  

 

% 

Reduction  

 

Maximum  

 

% 

Reduction  

 

Uniform  

 

1 
5.45×10

4

 

 

0.0300  

 

_ 0.0978  

 

_ 

FG, 

Symmetric  

 

5 
7.03×10

4

 

 

0.0257  

 

14.3  

 

0.0830  

 

0.0368  

 

FG, 

Symmetric  

 

10 
7.89×10

4

 

 

0.0194  

 

35.3  

 

0.0700  

 

28.4  

 

FG, 

Asymmetric  

 

5 
7.39×10

4

 

 

0.0195  

 

35.0  

 

0.0500  

 

48.9  

 

FG, 

Asymmetric  

 

10 
7.39×10

4

 

 

0.0176  

 

41.3  

 

0.0368  

 

62.3  

 

 

2. Core thicknesses for different materials with same flexural stiffness, 𝐷11and same global stiffness. 

H.C.: homogeneous core; S.C.: symmetric core, A.S.: asymmetric core. 
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Core type  

 

E
h
/E

0
 

 

For constant D
11

 

 

For constant global stiffness  

 

Core thickness, 

h (mm)  

 

Global 

stiffness, k
s 

(MN/m)  

 

Core thickness, 

h (mm)  

 

Global 

stiffness, k
s 

(MN/m)  

 

Uniform  

 

1 20 5.5  

 

20  

 

5.65  

 

Symmetric  

 

5 12.58  

 

4.4  

 

14.44  

 

5.65  

 

Symmetric  

 

10 10.08  

 

3.67  

 

12.88  

 

5.65  

 

Asymmetric  

 

5 13.82  

 

5.5  

 

13.82  

 

5.65  

 

Asymmetric  

 

10 11.28  

 

4.78  

 

12.32  

 

5.65  

 

 

3. Maximum normal and shear strains for a given impact energy of 282 J. FG denotes functionally graded 

core. The % change in strain in FG core is with respect to the maximum strain in uniform core. 

 

Core type  

 

E
h
/E

0
 

 

F
max 

(N)  

 

ε
x
 

 

γ
xz 

 

 

   Maximum 

 

% 

Change  

 

Maximum  

 

% 

Change  

 

Uniform  

 

1 
5.33×10

4

 

 

0.0125  

 

- 

 

0.0978  

 

- 

FG, Asymmetric  

 

10 
5.16×10

4

 

 

0.0135  

 

+ 7.2  

 

0.0368  

 

- 23.32  

 

 

IV. SUMMARY AND CONCLUSION 
Based on two models found in the literature and based on different relations between relative density and elastic 

modulus, this chapter solves three optimization problems: the geometry of the sandwich panels is kept constant 

while the properties (Young’s modulus and density) are changed such that to optimize the total mass and/or the 

flexural rigidity. 

 

Choi and Sankar’s (2005) linear relation between the relative density and Young’s modulus is used to determine 

the FG asymmetric core and the uniform core parameters such as to obtain panels with the same mass and same 

flexural rigidity. The results of the impact problem prove that there is a significant reduction (approximately 

24%) in the maximum shear strain corresponding to maximum impact load of FG asymmetric core compared 

with the uniform core maximum shear strain, while the maximum normal strains corresponding to maximum 

impact load are almost the same. 

 

The second model is based on the quadratic relation between the relative density and Young’s modulus derived 

by Gibson and Ashby (1997). The Young’s modulus and the density were varied such as to obtain panels with 

same flexural rigidity or to obtain panels with the same total mass. The results of the impact analysis provided 

similar results for both problems: among the three sandwich panels (with homogeneous core, symmetric FG 

core and asymmetric FG core), the one with FG asymmetric core gives the smaller maximum shear strain 

corresponding to the maximum impact load The second model is based on the quadratic relat ion between the 

relative density and Young’s modulus derived by Gibson and Ashby (1997). The Young’s modulus and the 

density were varied such as to obtain panels with same flexural rigidity or to obtain panels with the same total 

mass. The results of the impact analysis provided similar results for both problems: among the three sandwich 
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panels (with homogeneous core, symmetric FG core and asymmetric FG core), the one with FG asymmetric 

core gives the smaller maximum shear strain corresponding to the maximum impact load (approximately 27% 

less than the uniform core) while the difference in maximum normal strain corresponding to the maximum 

impact load is small. Also, when the properties are changed such as to obtain the same flexural rigidity, the 

sandwich panel with asymmetric FG core gives the smaller total mass.  

 

These conclusions based on optimization studies emphasize again the superior capability of sandwich structures 

with FG cores over the sandwich structures with uniform cores. 
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